
Eur. Phys. J. B 13, 777–780 (2000) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. The distribution N(x) of citations of scientific papers has recently been illustrated (on ISI and
PRE data sets) and analyzed by Redner (Eur. Phys. J. B 4, 131 (1998)). To fit the data, a stretched
exponential (N(x) ∝ exp−(x/x0)β) has been used with only partial success. The success is not com-
plete because the data exhibit, for large citation count x, a power law (roughly N(x) ∝ x−3 for the ISI
data), which, clearly, the stretched exponential does not reproduce. This fact is then attributed to a pos-
sibly different nature of rarely cited and largely cited papers. We show here that, within a nonextensive
thermostatistical formalism, the same data can be quite satisfactorily fitted with a single curve (namely,
N(x) ∝ 1/[1 + (q − 1) λ x]

q
q−1 for the available values of x. This is consistent with the connection recently

established by Denisov (Phys. Lett. A 235, 447 (1997)) between this nonextensive formalism and the Zipf-
Mandelbrot law. What the present analysis ultimately suggests is that, in contrast to Redner’s conclusion,
the phenomenon might essentially be one and the same along the entire range of the citation number x.

PACS. 02.50.-r Probability theory, stochastic processes, and statistics – 01.75.+m Science and society –
89.90.+n Other topics of general interest to physicists (restricted to new topics in section 89)

Half a century ago, Zipf [1] made his remarkable obser-
vations about some basic linguistic laws. More precisely,
if we order the words appearing in a text (e.g., Homer’s
Iliad) from the most to the less frequent ones, thus obtain-
ing a ranking (low rank for the most used, and high rank
for the less used), we can plot, as a function of the rank,
the number of times those words appear. Zipf showed that,
excepting the words with extremely low rank, an inverse
power law emerges (so called Zipf’s law). The exponent
exhibits interesting universal aspects. For instance, for
the spoken language, it appears to be very sensitive to
the degree of instruction (primary, intermediate, highly
academic) of the speaker, but very little to the partic-
ular culture (French, German, Anglo-saxon). Later on,
Mandelbrot pointed out connections of this phenomenon
with fractals [2], and also suggested a further correction,
namely that substantially better fittings can be obtained
by using an inverse power law of the sum of the rank
with a constant (so called Zipf-Mandelbrot law). A further
step along this line was provided recently by Denisov [3].
Indeed, using within the Sinai-Bowen-Ruelle thermody-
namical formalism for symbolic dynamics, the nonexten-
sive thermostatistics proposed some years ago by one of
us [4], Denisov deduced the Zipf-Mandelbrot law. To be
more precise, it is clear that, unless one uses a specific
model, there is no way to deduce the precise values for
the exponent and the additive constant. What Denisov de-
duced, from very generic entropic arguments, was the form
of the law. In this sense, the approach is very analogous
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to those which succeed associating Gaussians to normal
diffusion, and Levy or Student’s t-distributions to anoma-
lous superdiffusion (see, for instance, [5,6] respectively).
Finally, it is important to stress here that, although the
present problematic was historically triggered in Linguis-
tics, the same kind of considerations are equally relevant
to DNA sequences, artificial languages, and a variety of
other stochastic, deterministic or mixed processes.

Here we focus on an interesting analysis of data con-
cerning citations of scientific publications. More precisely,
Redner [7] recently exhibited and discussed the distribu-
tions of citations related to two quite large data sets,
namely (i) 6 716 198 citations of 783 339 papers, pub-
lished in 1981 and cited between 1981 and June 1997, that
have been catalogued by the Institute for Scientific Infor-
mation (ISI), and (ii) 351 872 citations, as of June 1997,
of 24 296 papers cited at least once and which were pub-
lished in Physical Review D (PRD) in volumes 11 through
50 (1975-1994). In his study, Redner addressed the ci-
tations of publications, in variance with Laherrere and
Sornette [8], who addressed, in a similar study, the ci-
tations of authors. If we denote by x the number of
citations and by N(x) the number of papers that are
cited x times. The main results of the study were
that, for relatively large values of x, N(x) ∝ 1/xα
with α ' 3, whereas, for relatively small values of x,
the data were reasonably well fitted with a stretched
exponential, i.e., N(x) ∝ exp[−(x/x0)β ], β and x0 be-
ing the fitting parameters (β ' 0.44 and 0.39 for the ISI
and the PRD data respectively); see Figures 1a and 1b.
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Fig. 1. ISI and PRD distributions of citations (experimental data and fittings). From [7]: (a) log-linear plot and (b) log-log
plot. Present work: (c) log-linear plot and (d) log-log plot (Eq. (9) has been used with the values for (q, λ,N0) indicated in the
figure).

Since a stretched exponential by no means asymptotically
provides an inverse power law, the author concluded that
large x and low x phenomena are of different nature (in
the author’s words, “These results provide evidence that
the citation distribution is not described by a single func-
tion over the entire range of citation count”). While the
phenomenon exhibited by Redner is of great interest, we
must disagree with his conclusion. It is the central pur-
pose of our present effort to develop arguments within the
nonextensive statistical mechanics mentioned above [4],
and along the lines of Denisov, which will lead to a single
function N(x) having, like the stretched exponential, only
two fitting parameters. This function is of the power-law
type and will turn out to fit both ISI and PRD experimen-
tal data sensibly better than the forms described above.

Before presenting our arguments for this specific prob-
lem, let us briefly introduce the nonextensive formalism
we are referring to. If the physical system we are focusing
on involves long-range interactions or long-range micro-
scopic memory or (multi)fractal boundary conditions, it
can exhibit a quite anomalous thermodynamic behavior,
which might even be untractable within Boltzmann-Gibbs
(BG) statistical mechanics. To overcome at least some of
these pathological situations, an entropic form Sq has been
proposed [4] which yields a generalization of standard sta-
tistical mechanics and thermodynamics. This entropy is

defined as follows:

Sq ≡ k
1−

∑
i
pqi

q − 1

(∑
i

pi = 1; q ∈ R
)

(1)

where k is a positive constant (from now on taken to be
unity, without loss of generality). In the limit q → 1, we
recover the usual BG entropy, i.e., S1 = −

∑
i pi ln pi.

A property which characterizes the above generalized en-
tropic form is the following: if we have two independent
systems A and B such that pA+B

ij = pAi p
B
j , then

Sq(A+B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B). (2)

Consequently, if q > 1,= 1 or < 1, Sq is subexten-
sive, extensive or superextensive. Optimization of this en-
tropy with appropriate constraints provides equilibrium
distributions which are of the power-law type, and which
recover the exponential Boltzmann factor only in the
limit q → 1. This thermostatistics has provided interest-
ing insights onto a variety of physical systems such as
two-dimensional turbulence in pure-electron plasma [9],
self-gravitating systems [10], cosmology [11], solar neutri-
nos [12], Levy [5] and correlated [6] anomalous diffusions,
inverse bremsstrahlung absorption in plasma [13], quan-
tum scattering [14], one-dimensional maps [15], a variety
of self-organized critical models [16], long-range interac-
tion conservative systems [17], processing of EEG signals
of epileptic humans and turtles [18], among others (see [19]
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for a review). To theoretically study such complex systems
within this nonextensive formalism, some approaches (be-
sides, naturally, the usual analytic and numerical meth-
ods) are now available such as the generalizations of (i)
Kubo’s linear response theory, (ii) Feynman’s perturba-
tion theory as well as the Bogoliubov’s inequality (basis
of the variational method), (iii) Green’s functions, and (iv)
Feynman’s path integral (respectively generalized, in the
realm of nonextensivity, in [20–23]).

Let us now focuse on our specific problem, namely
the distributions of citations. The corresponding entropic
form is given by

Sq =
1−

∑∞

x=1
pqx

q − 1
· (3)

The optimization of this entropy with the corresponding
constraints [24], namely

∞∑
x=1

px = 1 (4)

and

〈x〉q ≡

∑∞

x=1
x pqx∑∞

x=1
pqx

= const., (5)

yields

pq(x) =
[1− (1− q)λx]

1
1−q∑∞

y=1
[1− (1− q)λy]

1
1−q

(6)

where, unless q = 1, λ is not (see [24]) the Lagrange pa-
rameter associated with constraint (5), but can neverthe-
less be determined through that constraint. This distri-
bution is expected to be an excellent approximation for
x not too small (say, not below 5), but departures would
not be surprising while approaching unity. Indeed, we have
deduced equation (6) through generic entropic considera-
tions and not by using a specific model. Also, for precisely
the same reason, q and λ are to be considered as free pa-
rameters within the present phenomenological approach.

Equation (6) implies that the so-called escort distri-
bution is given by

Pq(x) ≡ [pq(x)]q∑∞

y=1
[pq(y)]q

=
[1− (1− q)λx]

q
1−q∑∞

y=1
[1− (1− q)λy]

q
1−q

=

{∑∞

y=1

1

[1 + (q − 1)λy]
q
q−1

}−1

[1 + (q − 1)λx]
q
q−1

· (7)

This escort distribution is to be identified (see [24]) with
the above introduced experimental distribution N(x),
hence

N(x) = N(1)
[1 + (q − 1)λ]

q
q−1

[1 + (q − 1)λx]
q
q−1

(8)

or, equivalently,

N(x) =
N0

[1 + (q − 1)λx]
q
q−1

(9)

where we have simplified the notation by introducing N0.
The fittings of both ISI and PRD data series using this
functional form are exhibited in Figures 1c and 1d. We
can appreciate that they are considerably better (in both
precision and completeness) than those appearing in [7]. In
particular, we have obtained, for the ISI series, q ' 1.53,
hence q/(q − 1) ' 2.89, which is clearly compatible with
the approximate exponent 3 advanced in [7].

As a summarizing conclusion, we suggest that, in vari-
ance with what is stated in [7], the present interesting
linguistic-like phenomenon revealed by Redner appears to
emerge from one and the same reason for practically the
entire range of citation score x. Furthermore, this reason
appears to be deeply related to thermostatistical nonex-
tensivity. However, by no means this conclusion can be
considered as the complete analysis of the present empiri-
cal fact. Indeed, we still need to understand what peculiar-
ity of the nonlinear dynamics (i.e., what physical mech-
anism) of this phenomenon is responsible for the specific
values of q which fit the experimental data. As a sup-
plementary bonus, we might be able, along this line, to
understand why a stretched exponential form does not fit
the entire experimental range when citations per paper are
focused, whereas it appears to be satisfactory when cita-
tions per scientist are focused instead [8]. In other words,
specific microscopic models are of course very welcome in
order to achieve a more concrete insight, and also for ad-
dressing the exceedingly small values of x, which are out
of the scope of the present phenomenological approach.
Naturally, the predictive power of the theory would con-
sequently be enriched.
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